Sekėjai

Ieškoti šiame dienoraštyje

2021 m. spalio 8 d., penktadienis

And the winners are... The 2021 Nobel science prizes

 


"This year's Nobel prizes brought both delight and disbelief. Important work was honoured, but there was a surprising omission

SCIENTISTS SOMETIMES refer elliptically to winning a Nobel prize as "the trip to Stockholm". Not this year, it isn't. The white-tie award ceremony in the Concert Hall, the splendid banquet in the City Hall and--for those who can last the pace, the equally splendid unofficial after-party in the students' union of one of Stockholm's universities (they rotate the honour) are all cancelled, just as they were last year. That will probably not, however, diminish the joy of this year's laureates. They will be on cloud nine already, having snagged the most famous awards in science.

The physics prize went to three researchers who have studied complex, chaotic and apparently random systems and developed ways to predict their long-term behaviour, with implications ranging from how to study the climate to the exploitation of exotic materials. Half of the award of SKr10m (about $1.1m) was shared by Syukuro Manabe of Princeton University and Klaus Hasselmann of the Max Planck Institute for Meteorology, in Hamburg. The other half went to Giorgio Parisi of Sapienza, the principal university in Rome.

Drs Manabe and Hasselmann laid the foundations of the modelling of Earth's climate that led to "quantifying variability and reliably predicting global warming", according to the Nobel Committee for Physics of Sweden's Royal Academy of Science. Dr Parisi was awarded his share for discoveries around the "interplay of disorder and fluctuations in physical systems from atomic to planetary scales".

Heat and light

In the 1960s Dr Manabe, an atmospheric scientist, wove together emerging strands of understanding of the dynamics and thermodynamics of Earth's atmosphere to make the first reliable prediction that doubling the level of carbon dioxide present would also increase the planet's surface temperature. His work led to the development of physical models of Earth's climate and laid the foundation for the climate models used today.

Around the same time, scientists such as Edward Lorenz of the Massachusetts Institute of Technology were beginning to describe weather as a chaotic system--in other words, something that had so many interacting individual components, such as temperature, pressure, humidity and wind speed, that even small variations in initial conditions could result in enormous differences at a later stage. In this description, weather evolved rapidly and became essentially unpredictable even just a few days into the future.

In the 1970s Dr Hasselmann developed models to show how weather, despite being chaotic and unpredictable in the short-term, could yield reliable models to foreshadow Earth's climate over much longer periods. In describing his work he made an analogy to Brownian motion, the jostling movement of pollen grains in water that was first observed down a microscope by Robert Brown, a botanist, in 1827. Almost 80 years later, Albert Einstein posited that the slow zigzagging of such grains could be explained by their continual bombardment by much tinier, fast-moving water molecules. The large-scale climate can similarly be seen as a consequence of numerous smaller events.

Around 1980 Dr Parisi found some of the rules that govern apparently random phenomena. He studied a type of material called "spin glass", in which, for example, iron atoms are mixed at random into a matrix of copper atoms. The iron atoms each behave as tiny magnets but, whereas in a normal lump of magnetised metal their north-south poles all point in the same direction, in a spin glass they do not. Dr Parisi devised a way to understand how they find their optimal orientations. His mathematical ideas not only help explain some of the complex systems of Earth's climate, as described by his two fellow laureates, but also illuminate other apparently random phenomena in fields as diverse as animal behaviour, neuroscience and machine learning.

This year's physics prize is the first scientific Nobel awarded for understanding of the climate. Asked if this was a not-so-subtle message to world leaders ahead of the upcoming COP26 climate summit in Glasgow, members of the award committee said the prize was meant to celebrate the discoveries themselves. But, they added, it also showed that the modelling of the climate and the notion of global warming rest on solid physical science. Human beings can no longer say they did not know how or why Earth is heating up.

Ringing the changes

The chemistry prize was shared by Benjamin List, of the Max Planck Institute for Coal Research, in Mülheim an der Ruhr, and David MacMillan, of Princeton University. Their prizewinning work, published in 2000, was conducted independently, and unknown to each other at the time, but with the same end in mind. This was to break the stranglehold of enzymes and transition metals on the field of catalysis.

Some chemical reactions proceed with alacrity. Most, though--including many that are industrially important--need a helping hand in the form of a catalyst. Evolution has provided a goodly range of these in the form of enzymes, which are large, complicated and sometimes temperamental protein molecules, but which have the advantage that they can create pure versions of what are known as optical isomers. These are molecules that have two forms which are mirror images of each other. This is important in the drug industry, for the different versions, known as enantiomers, can have different effects in the body. Also, if you choose the right enzymes, it is often possible to carry out multi-step reactions in only a few stages.

 

Transition metals are those in the middle of the periodic table--copper, nickel and iron, for example. The structures of the electron shells surrounding the nuclei of their atoms are complicated, meaning they are chemically versatile. This is what makes them good catalysts. Some transition-metal catalysts are the metals themselves. More often, they are small molecules that include a transition-metal atom. Transition-metal catalysts can be easier to handle than enzymes, but usually fail to distinguish between enantiomers. Also, transition-metal compounds are frequently toxic, with all the environmental consequences that entails. And multi-step reactions involving them can be long-winded.

 

Dr List and Dr MacMillan found a way to have the best of both worlds: small-molecule catalysts that have no metal atoms in them, can turn out pure enantiomers, and often simplify multi-step reactions. That has significant industrial implications.

 

 

Dr List worked on an enzyme called aldolase A. This catalyses what is known as the aldol reaction, an important way of forging molecular bonds between carbon atoms. Aldolase A is made of 350 amino acids, the building blocks of proteins, but the bit that does the work consists of only three of these: lysine, glutamic acid and tyrosine. The rest of the enzyme is packaging. He therefore wondered if he could isolate the enzyme's active centre and yet preserve its activity. In fact, he did better. He showed that the aldol reaction can be catalysed by a single amino acid, proline. And, crucially, this retains the enantiomeric purity of the enzyme-mediated reaction.

 

Dr MacMillan came from the other end of the problem. He wanted to remove the metal (in this case copper) from the catalyst involved in a different process, the Diels-Alder reaction. This is a way of joining two molecules into a six-carbon ring. One of the reagents contributes four carbon atoms to the ring and the other contributes two. Six-carbon rings are ubiquitous in organic chemistry, and by putting different side groups onto the reagents a vast variety of them can be turned out. Dr MacMillan found he could catalyse Diels-Alder reactions using a type of metal-free molecule called an imidazolidinone to activate the two-carbon component, meaning that it combines enthusiastically with its four-carbon compadre.

 

The result of these two pieces of work is a field called asymmetric organocatalysis (the asymmetric part of the name referring to its ability to generate pure enantiomers), that is now rippling through industrial chemistry. And, since industrial chemistry, in one form or another, underpins most economic activity, it is also rippling, however invisibly, through life.

Sense and sensibility

The idea that there are five senses goes back at least as far as Aristotle. But it is not quite true. Four of the senses are obvious, if only because each is associated with a particular organ: sight with the eyes, hearing with the ears, taste with the tongue and smell with the nose. But the fifth classical sense, touch, is distributed over the whole surface of the body, albeit that it is concentrated in the fingertips.

Touch, moreover, is only one such distributed sense. Others perceived consciously include pain, heat and cold. And modern science has shown there are also unconsciously perceived senses, known collectively as proprioception. These keep track of the position and movement of the body and its parts. This year's Nobel prize for physiology or medicine went to the discoverers of the molecular mechanisms of two of these distributed senses--temperature and mechanical stimulation.

The winners were David Julius of the University of California, San Francisco and Ardem Patapoutian of Scripps Research, a biomedical institute in San Diego. Dr Julius did the pioneering work on temperature. He and Dr Patapoutian, acting independently, then advanced this work. After that, Dr Patapoutian moved on to look at mechanical stimulation.

 

Dr Julius's chosen tool for his investigation, which he began in the late 1990s, was capsaicin. This is the active ingredient of chilli peppers. By a chemical coincidence (as was then assumed and is now known) capsaicin reacts with, and thus stimulates, one of the body's heat-receptor proteins. Dr Julius set out to discover what this protein was. To do so he made millions of fragments of genetic material for proteins known to be active in heat-receptor cells. He then introduced these fragments into other cells, to encourage them to manufacture the relevant protein fragments. That done, he tested the modified cells for sensitivity to capsaicin.

 

The fragments which induced capsaicin sensitivity turned out to be parts of a protein now called TRPV1. This belongs to a class of proteins called ion channels, which do many jobs in the body. As predicted, TRPV1 turned out to be heat sensitive. When the temperature rises above 43°C, the channel through it opens, permitting ions of calcium and sodium to pass. That chemical signal stimulates a nerve impulse which tells the brain about the temperature change.

 

TRPV1 turned out to be one of several temperature-sensitive ion channels, some of which register heat, and some cold. It was one of the cold-sensitive varieties, TRPM8, which was discovered simultaneously by Dr Julius and Dr Patapoutian.

 

Dr Patapoutian then went on to look at the sensation of touch. Molecular biology having advanced in the interim, he was able to work with whole proteins--or, rather, the genes for whole proteins. He identified 72 proteins, expressed in a mechanically sensitive cell line, that looked like potential touch-sensitive ion channels. He tested them one at a time, by silencing the genes that encode them and poking the resulting cells. The first 71 silencings had no effect. But the 72nd proved to be of the protein he was looking for. He called that protein PIEZO1.

 

In nature, PIEZO1 is found not in sensory neurons, but rather in organs like the bladder where pressure sensitivity is important. But Dr Patapoutian discovered a similar channel, PIEZO2, which is, indeed, found in nerve endings. It is this that is responsible for touch and proprioception.

 

Fascinating work, then. And important. It is through the senses, and the senses alone, that people are able to perceive the world. But to some the award came as a surprise. In a year of covid, they had been expecting the honours to go elsewhere--perhaps to the inventors of mRNA-vaccine technology. Like God, however, the various Nobel-prize committees work in mysterious ways their wonders to perform." [1]

 

·  ·  ·  1. "And the winners are... The 2021 Nobel science prizes." The Economist, 9 Oct. 2021, p. 77(US).

 

O kas, jei įmonės būtų priverstos mokėti už planetos kepimą?


„DAUG KLAUSIMŲ kyla verslo lyderiams artėjant spalio 31 d.-lapkričio 12 d. JT COP26 klimato aukščiausiojo lygio susitikimui. Vadovams, vykstantiems į Glazgą, jie svyruoja nuo kasdienybės (keliauti traukiniu? Valgyti tik augalinius produktus?), iki svarbių (kodėl išvis aš ten važiuoju?) Svarbiausias klausimas: kas bus jei šakys rimtai imsis riboti planetos atšilimą iki 2,0 ° C virš ikipramoninio lygio, kaip nustatyta 2015 m. Paryžiaus klimato susitarime? Į šį klausimą vengia atsakyti dauguma tarptautinių bendrovių.

    Įmonės, kaip taisyklė, nemėgsta būti priverstos ką nors daryti. Joms labiau patinka savanoriški gestai-kurių pakanka, kad vyriausybės atsitrauktų nuo įmonių nugaros. Šiuo metu jos žada sumažinti anglies dvideginio išmetimą iki „grynojo nulio“, kaip konfeti, motyvuodamos, kad tokie įžadai pritraukia investuotojus, darbuotojus ir klientus. Tai žingsnis teisinga linkme. Ir vis dėlto kai kurie iš tų pasižadėjimų yra popieriniai. Iš daugiau nei 4200 įmonių, priklausančių G20 didžiųjų šalių klubui, kurios atskleidė savo ambicijas klimato kaitos srityje, tik penktadalis įsipareigojo siekti vadinamųjų mokslu pagrįstų tikslų, kurie padėtų pasauliui laikytis Paryžiaus susitarimo tikslo. Tam reikia, kad įmonės pradėtų mažinti išmetamų teršalų kiekį per metus, o ne dešimtmečius. Dideliems teršėjams tai kelia tiesioginę grėsmę pelningumui. Manoma, kad altruizmo nepakanka įtikinti įmones veikti. Vyriausybės turės uždėti varžtus.

 

    Net verslininkai supranta, kad geriausias būdas daryti spaudimą yra įvesti visuotinę anglies dioksido mokesčių sistemą, su tam tikra perskirstymo forma, siekiant palengvinti neturtingiausių nykščių skausmą.

 

Bėda ta, kad anglies dioksido kaina padengia tik apie penktadalį pasaulio išmetamųjų teršalų. Dėl to vidutinė pasaulio kaina yra tik 3 doleriai už toną anglies dioksido. Siekdamas įgyvendinti Paryžiaus susitarimo siekius, TVF teigia, kad pasaulinė anglies dioksido kaina turi pakilti iki 75 dolerių. Kiti mano, kad tai turėtų būti beveik dvigubai daugiau. Kai kuriems sunkiesiems teršėjams, kuriems taikoma Europos Sąjungos prekybos išmetamųjų teršalų leidimais sistema, ji jau viršija [eurų] 60 (69 dolerius). Naujojoje (ribotoje) Kinijos schemoje, priešingai, tai yra menkniekis. Amerika neturi jokios federalinės schemos.

    Didesnė pasaulinė kaina paveiktų visas įmones, nors ir netolygiai. Kol kas tai traktuojama, kaip per daug tolima ateitis, kad į tai būtų žiūrima rimtai. Tačiau kol kas pagalvokite, kas bus, jei tai iš tikrųjų įvyks.

    Pirmas svarbus dalykas būtų atskirti sunkius teršėjus nuo kitų. Ankstyvieji drąsių išmetamųjų teršalų tikslų įgyvendintojai yra iš pramonės šakų, tokių kaip mažmeninė prekyba, kur mažinti teršalų išmetimą yra gana paprasta. Tokiose šalyse kaip Didžioji Britanija, kur elektros tinklas vis tiek sparčiai mažina anglies dioksido kiekį, energijos vartotojams gali neprireikti nepriklausomų pastangų.

 

Nemažai sektorių, atsakingų už didžiąją listinguojamų bendrovių išmetamųjų teršalų dalį-elektros energijos tiekėjai, naftos ir dujų įmonės, plieno ir cemento gamintojai-susiduria su daug sunkesniais iššūkiais.

 

Žlugus daug anglies reikalaujančių daiktų paklausai, jie turėtų rasti naujų pinigų srautų generavimo būdų. Kai kurie svajoja apie atsinaujinančius energijos šaltinius. Kai kurie mato mažo anglies dioksido kiekio plastiko ir medžiagų ateitį. Bet jei jie negali greitai paversti jų milžiniškais pajamų šaltiniais, jie geriau nutrauktų veiklą ir grąžintų akcininkams grynuosius pinigus. Vakarų firmos gali tikėtis, kad savo nešvariausią turtą galės parduoti besivystančio pasaulio valstybės įmonėms. Tačiau ir joms būtų taikomas visuotinis anglies dioksido mokestis. Kai kuriems, kuo greičiau jie pradeda mažinti anglies kiekį, tuo geriau.

 

    Didesniam įmonių skaičiui pagrindinė problema būtų tiekimo grandinės. „Standard Chartered“, bankas, teigia, kad beveik trys ketvirtadaliai tarptautinių įmonių išmetamų teršalų yra iš jų tiekėjų. Kova su jais yra didžiulė užduotis.

 

Paimkime anglimi pripildytą Kiniją, kur daugelis jų įsikūrę. Guido Giacconi iš ES prekybos rūmų Kinijoje teigia, kad nors šalis daug investuoja į atsinaujinančius energijos šaltinius, dėl elektros tinklo neskaidrumo yra „sunku, jei ne neįmanoma“ garantuoti, kad įmonės energija nebus naudojama anglis. Dėl to tokioms įmonėms kaip „Apple“ sunku patvirtinti, kad jų tiekimo grandinės Kinijoje (kur gaminami „iPhone“) yra neutralios anglies dioksido atžvilgiu. Jei Kinijos tiekėjams būtų taikomas anglies dioksido mokestis, „Apple“ gali tekti pakelti „iGadgets“ kainas.

    Tiekimo grandinių perkėlimas iš Kinijos taip pat atneštų išlaidų. Kai kuriose Azijos alternatyvose, tokiose kaip Vietnamas ar Indonezija, iškastinis kuras yra labiau paplitęs nei Kinijoje. Besivystančiose rinkose, kuriose yra daug švarios energijos, pavyzdžiui, Brazilijoje, prastos infrastruktūros ir biurokratijos išlaidos yra nepatrauklios. Sugrįžimas į Vakarus daugeliui Vakarų firmų yra neskanus; turtingo pasaulio darbo sąnaudos yra tiesiog per didelės.

    Tai lemia trečią problemą: vartojimą. Didelis anglies dioksido mokestis neabejotinai padidins kainas, o tai pakeis vartojimo elgesį, ypač tarp mažiau uždirbančių. Pavyzdžiui, turizmo industrija turėtų mažiau pasikliauti pigiais skrydžiais atvykstančiais klientais. Prekybos centrai turėtų tiekti daugiau vietinio maisto. Žmonės gali pradėti sekti kai kurių perkamų daiktų anglies pėdsakus, sukeldami galvos skausmą mažmenininkams, pvz., „Amazon“.

    Kita vertus, naujovių būtų daugiau. Tarptautinė energetikos agentūra, atstovaujanti energiją vartojančioms šalims, praėjusiais metais teigė, kad investicijos į mažai anglies dioksido į aplinką išskiriančius mokslinius tyrimus ir plėtrą nuo 2012 m. mažai padidėjo. Tai apgailėtina. Anglies mokestis tai pakeistų. Pagalvokite apie hiperloopus, skirtus tolimam transportui; valgyti vabzdžius, jūros dumblius ir laboratorijoje užaugintą mėsą; begalinis virtualios realybės pramogų srautas, kai žmonės lieka namuose, o ne vartoja prekes, kurios tampa mažiau prieinamos dėl anglies sąskaitos.

    Išnykimo maištas

    Neišvengiamai kai kurios įmonės, nematančios šio rašto ant sienos, mirs. Tačiau kitos greitai supras, kad ateityje „prisitaikys arba pražus“. Tai nėra mantra, kurią generaliniai direktoriai skanduos COP26. O turėtų būti." [1]

·  ·  1. "The carbon-tax crackdown; Schumpeter." The Economist, 9 Oct. 2021, p. 66(US).

What if firms were forced to pay for frying the planet?

"MANY QUESTIONS are on the minds of business leaders in the run up to the UN's COP26 climate summit from October 31st to November 12th. For CEOs making the trip to Glasgow, they range from the mundane (travel by train? eat only plant-based food?) to the profound (why am I going in the first place?). The most important question, though, is barely asked: what would happen if governments agreed, sooner or later, to commitments serious enough to limit global warming to 1.5-2.0°C above pre-industrial levels, as stipulated in the Paris climate agreement of 2015? This question has an answer most multinationals shy away from. It would send shock waves through their entire business models.

Businesses, as a rule, do not like being forced to do anything. They prefer to make voluntary gestures--just enough to keep governments off their backs. Right now they are throwing around promises to cut carbon emissions to "net zero" like confetti, on the grounds that such vows attract investors, employees and customers. It is a step in the right direction. And yet some of those pledges are paper-thin. Of more than 4,200 firms in the G20 club of big economies that have disclosed their climate ambitions, only a fifth have committed to so-called science-based targets that would keep the world on track to meet the Paris agreement's goal. That requires firms to start slashing emissions within years, not decades. For big emitters this poses an instant threat to profitability. It strains credulity to think that altruism is enough to convince firms to act. Governments will have to apply the thumbscrews.

Even business folk realise that the best way to apply pressure is by imposing a global system of carbon taxes, with some form of redistribution to ease the pain on the poorest thumbs. The trouble is that only about one-fifth of global emissions is covered by a price on carbon. As a result the global average price is just $3 per tonne of carbon dioxide. To meet the ambitions of the Paris agreement, the IMF says the global carbon price needs to rise to $75. Others believe it should be almost double that. For some heavy emitters covered by the European Union's emissions-trading system, it is already above [euro]60 ($69). In China's new (limited) scheme, by contrast, it is a pittance. America has no federal scheme of any kind.

A higher global price would affect all businesses--albeit unevenly. For now, it is treated as too much of a long shot to take seriously. But assume for the moment it actually happened.

The first important thing would be to separate out the heavy emitters from the rest. Early adopters of bold emissions targets come from industries such as retail, where abating is relatively easy. In countries like Britain, where the grid is decarbonising fast anyway, that may require no independent effort on the part of energy users. A small number of sectors responsible for the bulk of listed companies' emissions--power utilities, oil and gas firms, steel- and cement-makers--have a much harder challenge. As demand for carbon-intensive stuff collapses, they would have to find new ways to generate cashflows. Some are dabbling in renewables. Some see a future in low-carbon plastics and materials. But if they cannot turn these swiftly into huge sources of income, they would be better shutting down operations and returning cash to shareholders. Western firms may hope they can sell off their dirtiest assets to state-owned companies in the developing world. Yet these, too, would be subject to a truly global carbon tax. For some, the sooner they start lightening their carbon load, the better.

For a broader set of businesses, supply chains would be the main issue. Standard Chartered, a bank, says almost three-quarters of multinationals' emissions come from their suppliers. Tackling those is an immense task. Take coal-addled China, where many of them are based. Guido Giacconi of the EU Chamber of Commerce in China says that though the country is investing heavily in renewables, it is "difficult if not impossible" to guarantee that a firm's energy use is free from coal, because of the opacity of the electricity grid. That makes it hard for firms like Apple to certify that their supply chains in China (where iPhones are made) are carbon-neutral. If its Chinese suppliers were consequently subject to a carbon tax, it might have to raise prices of iGadgets.

Moving supply chains out of China would bring costs, too. In some Asian alternatives, such as Vietnam or Indonesia, fossil fuels are more prevalent than in China. In emerging markets with a lot of clean energy, such as Brazil, the costs of bad infrastructure and red tape are unappealing. Reshoring is unpalatable for many Western firms; the costs of rich-world labour are just too high.

This feeds into a third problem: consumption. A high carbon tax is bound to push up prices, which will change consumer behaviour, especially among lower earners. The tourism industry, for instance, would have to rely less on customers arriving by cheap flights. Supermarkets would need to provide more local foods. People might start tracking the carbon trail of some things they buy, creating headaches for retailers like Amazon.

The flip side would be more innovation. The International Energy Agency, which represents energy-consuming countries, said last year that investments in low-carbon research and development had barely budged since 2012, and was a fifth of what was spent on health and defence. This is pitiful. A carbon tax would change that. Think of hyperloops for long-distant transport; eating bugs, seaweed and lab-grown meat; an endless stream of virtual-reality entertainment as people stay at home rather than consume goods that become less affordable owing to the carbon bill.

Extinction rebellion

Inevitably, some firms which fail to see the writing on the wall will die. But others will swiftly realise that the future is "adapt or perish". This is not a mantra CEOs will chant at COP26. It should be.” [1]

·  ·  1. "The carbon-tax crackdown; Schumpeter." The Economist, 9 Oct. 2021, p. 66(US).

 

Landsbergiai rushed to appease Taiwan, hoping to steal the secret of good semiconductor production from Taiwan

 And the secret is very simple - the state spends a lot of money on semiconductors: 

  "A review by the Biden administration noted that the Taiwanese government bears 50% of the cost of land and 45% of the cost of building and installing semiconductor facilities; and that South Korean subsidies reduce the cost of owning a semiconductor facility by 25-30%." [1] 

 The Lithuanian state's riches has long been stolen by the Landsbergiai mafia, so we cannot apply the Taiwanese secret - there is no money.

1.  "In search of resilience; Precautionism." The Economist, 9 Oct. 2021, p. 0.8(US).

Landsbergiai puolėsi pataikauti Taivanui, tikėdamiesi pavogti iš Taivano gerų puslaidininkių gamybos paslaptį

O paslaptis labai paprasta - valstybė skiria daug pinigų puslaidininkiams:

"Bideno administracijos apžvalgoje pažymėta, kad Taivano vyriausybė padengia 50% žemės išlaidų ir 45% puslaidininkių gamybos įrenginių statybos ir įrengimų išlaidų; ir kad Pietų Korėjos subsidijos 25–30% sumažina puslaidininkių gamybos įrenginio nuosavybės išlaidas." [1]

Lietuvos valstybė yra seniai Landsbergių klikos išvogta, taip kad Taivano paslaptį pritaikyti mes negalime - nėra pinigų. 

1.  "In search of resilience; Precautionism." The Economist, 9 Oct. 2021, p. 0.8(US).