Sekėjai

Ieškoti šiame dienoraštyje

2021 m. lapkričio 24 d., trečiadienis

Creating improved living things


"Some time ago, DNA synthesis was a slow and difficult process. The reagents — those famous bases (A’s, T’s, C’s and G’s) that make up DNA — were pipetted onto a plastic plate with 96 pits, or wells, each of which held roughly 50 microliters, equivalent to one eyedropper drop of liquid. “In a 96-well plate, conceptually what you have to do is you put liquid in, you mix, you wait, maybe you apply some heat and then take the liquid out,” Leproust says. The Bills proposed to put this same process on a silicon chip that, with the same footprint as a 96-well plate, would be able to hold a million tiny wells, each with a volume of 10 picoliters, or less than one-millionth the size of a 50-microliter well.

Because the wells were so small, they couldn’t simply pipette liquids into them. Instead, they used what was essentially an inkjet printer to fill them, distributing A’s, T’s, C’s and G’s rather than pigmented inks. A catalyst called tetrazole was added to bind bases into a single-strand sequence of DNA; advanced optics made perfect alignment possible. The upshot was that instead of producing 96 pieces of DNA at the same time, they could now print millions.

The concept was simple, but, Leproust says, “the engineering was hard.” When you synthesize DNA, she explains, the yield, or success rate, goes down with every base added. A’s and T’s bond together more weakly than G’s and C’s, so DNA sequences with large numbers of consecutive A’s and T’s are often unstable. In general, the longer your strand of DNA, the greater the likelihood of errors. Twist Bioscience, the company that Leproust and the Bills founded, currently synthesizes the longest DNA snippets in the industry, up to 300 base pairs. Called oligos, they can then be joined together to form genes.

 

Today Twist charges nine cents a base pair for DNA, a nearly tenfold decrease from the industry standard a decade ago. As a customer, you can visit the Twist website, upload a spreadsheet with the DNA sequence that you want, select a quantity and pay for it with a credit card. After a few days, the DNA is delivered to your laboratory door. At that point, you can insert the synthetic DNA into cells and get them to begin making — hopefully — the target molecules that the DNA is coded to produce.

 

These molecules eventually become the basis for new drugs, food flavorings, fake meat, next-gen fertilizers, industrial products for the petroleum industry. Twist is one of a number of companies selling synthetic genes, betting on a future filled with bioengineered products with DNA as their building blocks.

In a way, that future has arrived. Gene synthesis is behind two of the biggest “products” of the past year: the mRNA vaccines from Pfizer and Moderna. Almost as soon as the Chinese C.D.C. first released the genomic sequence of SARS-CoV-2 to public databases in January 2020, the two pharmaceutical companies were able to synthesize the DNA that corresponds to a particular antigen on the virus, called the spike protein. This meant that their vaccines — unlike traditional analogues, which teach the immune system to recognize a virus by introducing a weakened version of it — could deliver genetic instructions prompting the body to create just the spike protein, so it will be recognized and attacked during an actual viral infection.

As recently as 10 years ago, this would have been barely feasible. It would have been challenging for researchers to synthesize a DNA sequence long enough to encode the full spike protein. But technical advances in the last few years allowed the vaccine developers to synthesize much longer pieces of DNA and RNA at much lower cost, more rapidly. We had vaccine prototypes within weeks and shots in arms within the year." 

 




Komentarų nėra: