Sekėjai

Ieškoti šiame dienoraštyje

2024 m. gegužės 7 d., antradienis

Kremlin Plans to Test Its Nuclear Readiness --- Tactical-weapons exercises to come in response to Western remarks on Ukraine

 

"Russian President Vladimir Putin ordered his country's military to test its readiness to use tactical nuclear weapons -- a step the Kremlin said was a response to recent comments by Western officials, including warnings that European powers could do more to help Ukraine in its fight with Moscow.

Exercises involving Russia's navy and air force, along with units in the country's southern military district that oversees Crimea and other parts of Ukraine inhabited by Russians, are to begin on an undisclosed date, the Russian Defense Ministry said.

Kremlin spokesman Dmitry Peskov said the drills are a response to some Western officials' suggestions that restrictions on Kyiv's use of Western weapons should be lifted, and that Ukraine's allies could significantly increase their conflict involvement if Russia threatens major Ukrainian cities.

"This is a whole new level of escalation of tensions, it's unprecedented, and of course it requires special attention and special measures," Peskov said.

Peskov singled out French President Emmanuel Macron, who has said the West should consider sending ground troops to Ukraine if Kyiv is close to defeat.

The Kremlin spokesman also took aim at the U.K., whose foreign secretary, David Cameron, last week said Ukraine has the right to decide how to use long-range weapons provided by his country, appearing to back away from a policy banning the use of Western-supplied arms to strike Russia.

Moscow on Monday said it had summoned the U.K. ambassador and warned him that Russia may respond to any Ukrainian attack on its territory using British weapons with attacks on British bases and military equipment.

The Pentagon criticized Russia's announcement of military drills, and said it hadn't seen any change in Moscow's strategic force posture.

The announcement of Russian military drills also comes as more than a dozen member states of the North Atlantic Treaty Organization take part in the security alliance's largest military exercise since the Cold War, focused on Russia.

In recent weeks, Russia has taken a string of Ukrainian villages in the eastern part of the country around Avdiivka, a city its forces captured in February.

Putin has hinted on numerous occasions at his willingness to use tactical nuclear weapons in Ukraine, and Western officials have cited the risks of nuclear escalation as they weigh what kinds of weapons to supply to Ukraine.

Ahead of his re-election for a fifth presidential term in March, Putin warned again that Russia was prepared to use nuclear weapons if it feels threatened. "They started talking about the possibility of sending NATO military contingents to Ukraine," Putin said. Russia's opponents, Putin said, "must after all realize that we too have weapons that can hit targets on their territory."

On Monday, Macron said France isn't seeking regime change in Moscow.

Tactical nuclear weapons are short-range weapons designed for use on the battlefield or to take out critical infrastructure, such as power stations. Unlike strategic nuclear weapons, they have never been constrained by any formal arms-control agreement." [1]

 Macron is already awake. He said that he dreamed about Napoleon I. David Cameron, who initiated Brexit just before the collapse of global trade, isolating and thus weakening the United Kingdom, is now rushing to initiate the exit of all humanity the way of Dodo the bird. What a terrible loser.

1. World News: Kremlin Plans to Test Its Nuclear Readiness --- Tactical-weapons exercises to come in response to Western remarks on Ukraine. Luxmoore, Matthew.  Wall Street Journal, Eastern edition; New York, N.Y.. 07 May 2024: A.6.

Balsuokite už Eduardą Vaitkų, nes ir jūs taip mirsite: Ukrainos pasienio upėje rasti dar trijų skenduolių lavonai

  "Ukrainos pasienio upėje Tisoje rasti dar trijų nuskendusių vyrų lavonai. Tai antradienį „Telegram“ kanale pranešė Ukrainos valstybinės sienos apsaugos tarnyba, kuria remiasi UNIAN. „Apie baisų radinį vandenyje pasieniečiams pranešė vietos žvejys. Į įvykio vietą buvo iškviesti gelbėtojai ir policija. Paaiškėjo, kad žuvęs vyras – 28 metų amžiaus Ivano Frankivsko srities gyventojas. Bendradarbiaudami su kolegomis iš Vidaus reikalų ministerijos, pasieniečiai sužinojo, kad rasti dar du skenduoliai. Vienam iš žuvusiųjų buvo tik 20 metų“, – rašoma pranešime. Pasieniečiai ragina ukrainiečius nerizikuoti savo gyvybėmis. „Nors Tisos vandens lygis nuslūgo, upė tebėra pavojinga“, – sakoma pranešime. Kaip anksčiau pranešė UNIAN, gegužės 6 d. Tisoje buvo rasti iškart šeši nuskendusių žmonių kūnai. Keturi lavonai rasti Ukrainos pusėje, du – Rumunijos pusėje. Gegužės 6 d. Ukrainos pasieniečiai informavo, kad iš viso Tisoje jau rasti 25 žmonių, kurie nuskendo, nelegaliai keldamiesi per upę, lavonai. UNIAN primena, kad, prasidėjus plataus masto karui, šaukiamojo amžiaus vyrai neturi teisės išvykti iš Ukrainos be leidimo. Dabar mobilizacinis amžius Ukrainoje – nuo 27 iki 60 metų."

Lietuvoje fašistuojantys kasčiūnai mobilizuos ir moteris.


Vote for Eduardas Vaitkus, otherwise you too will die similar way: The bodies of three more drowned people were found in the border river of Ukraine


  "The corpses of three more drowned men were found in the Ukrainian border river Tisa. This was reported on the Telegram channel on Tuesday by the State Border Guard Service of Ukraine, which is based on UNIAN. "A local fisherman reported the terrible discovery in the water to the border guards. Rescuers and the police were called to the scene. It turned out, "The dead man is a 28-year-old resident of Ivano-Frankivsk. In cooperation with the Ministry of Internal Affairs, they found out that one of the dead was only 20 years old. The border guards urge the Ukrainians not to risk their lives." Although the water level of the Tisa has receded, the report said, six bodies of drowned people were found on the Ukrainian side on May 6 informed that a total of 25 bodies of people who drowned while illegally crossing the river have been found in Tisa. UNIAN reminds that men of conscription age do not have the right to leave Ukraine without a permit. Now the mobilization age in Ukraine is from 27 to 60 years old."

Kasčiūnas-type Fascists in Lithuania will also mobilize women.

 


 



S. Skvernelis: turime labai aiškius prokremliškus kandidatus į prezidentus

Kai šiaudai dega, tai yra liepsna, bet šilumos nedaug. Skvernelis yra šiaudinis patriotas, kaip ir daugelis kitų. Lietuvai mažai naudos iš tokio apsimestinio patriotizmo. Laikas juos visus varyti darbus dirbti. Be jūsų išsiaiškinsime, ko mums bijoti, o ko - jau ne.

2024 m. gegužės 6 d., pirmadienis

 The open-science movement for sharing laboratory materials gains momentum

"Many researchers support open science, but how can they translate this view into behaviours to boost sharing?

Lenny Teytelman can still recall his days as a PhD student 20 years ago when he accessed public databases for his studies in yeast genetics. 

“My research would be technically impossible had researchers not deposited their data into the National Center for Biotechnology Information,” says Teytelman, the co-founder of protocols.io, a platform for open-access protocols, based in Berkeley, California. (Protocols.io was acquired by Springer Nature, which publishes Nature, last July.)

Open science is a broad term that refers to the movement of making the entire research life cycle freely available to everyone, from citizens and students to research professionals. This includes sharing research plans, protocols, materials, data and papers through open-access platforms.

The practice of open science is on an upswing. PLOS, a non-profit publisher of open-access journals, found that the rates of data-repository use rose from 22% in 2019 to 28% in 2022 for more than 71,000 papers published in its journals during that time. The rates of preprints associated with published articles also increased, from 15% in 2019 to 24% in 2022. A 2006 study that analysed close to 1,500 published papers found evidence that open-access articles had higher numbers of citations by peers than did non-open-access articles published in the same journal after controlling for factors such as field, the number of authors and journal impact factor (G. Eysenbach PLoS Biol. 4, e157; 2006).

Although many researchers wholeheartedly embrace open-access publishing, the open sharing of laboratory materials, reagents and protocols has seen a slower adoption, mostly owing to a lack of awareness on how to properly share them and poor incentives. A paper published in September last year in Nature Communications found that the majority of more than 22,000 survey participants had favourable attitudes towards open research (J. Ferguson et al. Nature Commun. 14, 5401; 2023). Of the participants, 90% had engaged in at least one open-science practice such as sharing data and code. Compared with a decade ago, open-science practices had increased from 49% in 2010 to 87% in 2020.

However, there is a disparity between attitudes and behaviours. Across all disciplines represented in the survey — economics, political science, psychology and sociology — the percentage of researchers who had openly shared their data and code was much lower than the percentage of researchers who supported the idea of open research.

 “Translating beliefs about open access into behaviours is challenging,” says Melina Fan, co-founder and chief scientific officer of Addgene, a non-profit platform for researchers to share DNA experimental materials called plasmids, in Watertown, Massachusetts. 

But repositories such as Addgene can play an important part in enabling resource sharing, she says. “Repositories lower the barrier to sharing and provide the infrastructure needed to change research culture.”

Open-science organizations

Tsuyoshi Nakagawa, a plant geneticist at Shimane University in Matsue, Japan, found that a gene cloning kit worked particularly well to introduce genes into plants by means of plasmids. “As I worked in a research support centre in the university, it felt natural for me to share my experience and materials with the community,” he says.

“However, after I started sharing [plasmids], I received too many requests which took time away from my work.” To save time, he started using Addgene, which facilitated the distribution of the plasmids. Since 2016, Nakagawa has deposited more than 80 plasmids on Addgene.

The sharing of tangible scientific resources, such as plasmids, requires a materials transfer agreement. When researchers share materials such as proteins and chemicals across institutions, the process of material transfer can take weeks or months. 

 Open-science organizations such as Addgene help to complete all legal paperwork pertaining to material transfer behind the scenes in a few days to facilitate the sharing of scientific materials, including plasmids, antibodies and viruses.

Fan says that Addgene can enhance quality control on top of being a distributor. “When we receive plasmids from depositors, we sequence them to ensure that the sequences match what the depositors claim. This is important for reproducibility and transparency.” Fan also recommends that scientists deposit their materials in global repositories that are well established and financially self-sustaining, to better extend the reach and longevity of materials.

Nakagawa advises scientists to check with representatives from open-science organizations and experienced colleagues when there are concerns. For instance, he worked with Addgene staff to ensure that the organization could internally reproduce the plasmid materials he wanted to share. “While funders and publishers can demand researchers to share through policies, open-science institutions and communities play a pivotal role to promote a research culture that normalizes sharing practices,” says Teytelman.

The Center for Open Science, a non-profit organization in Charlottesville, Virginia, aims to achieve exactly that by following a ‘theory of change’ philosophy. “Our strategy consists of five steps: making open-science practices possible, easy, normal, rewardable and eventually a requirement,” says David Mellor, director of policy at the centre. “The first activity in our strategy for culture change is to develop infrastructure to enable sharing, followed by an easy-to-use ‘user interface’ that makes it easier to share.”

For example, researchers can register their studies on the Open Science Framework registry, the centre’s open-sourced web platform. The centre has helped to create communities for researchers who are taking on open science, such as the Society for the Improvement of Psychological Science, as a way for them to see open-science practices as typical and inherent parts of research.

The centre’s staff have also thought of ways to incentivize open science, such as gathering evidence of sharing, which researchers can add to grant proposals, and ways for journals to prioritize the peer review and acceptance of registered studies.

Winning over the sceptics

In addition to the view that sharing materials adds to the workload, sceptics also criticize open-access platforms that rely solely on the research community to self-police standards for giving credit when due in the form of citations, authorships and acknowledgements. The absence of active enforcement of such standards might discourage some researchers from sharing. The use of tracking technology can help to change the minds of those who are worried about not getting credit for their work (see ‘Five tips on how to share laboratory materials effectively’). 

For example, protocols.io has introduced metrics including the number of article views and citations, and it gives an option for users to vouch for the reliability of protocols.

Five tips on how to share laboratory materials effectively

1. Seek out guidelines on sharing.

Check policies from funders, publishers and institutions to determine whether it is mandatory or recommended to share.

2. Decide with collaborators whether to share from the outset.

Discuss the terms of sharing as a research team. Although open science encompasses research protocols, raw data and experimental materials, they do not always need to be shared to an equal degree, for example, with domestic and international researchers.

3. Start early to minimize the administrative pain of sharing.

Sharing takes extra effort, and to reduce the time needed, use tools or implement practices that make sharing easier, as early as possible. 

For instance, consider introducing explanatory lines when you start coding.

4. Track who has accessed your materials.

A big motivation for researchers to keep sharing is when they see their colleagues using their research. As an incentive, open-science platforms are using technologies to provide researchers with metrics of how well received their materials are.

5. Report plans and achievements.

Some funders such as NASA and the US National Institutes of Health now require researchers to incorporate open-science data-management plans and evidence of sharing into grant proposals.

Another reason that researchers are hesitant to participate in open science is poor awareness and even negative sentiments surrounding the movement, particularly in low- and middle-income countries (LMICs). Magaret Sivapragasam, who used to work as a senior lecturer and process engineer at Quest International University in Ipoh, Malaysia, says that in her country, the concept of open science is still new compared with North America and Europe.

“Researchers in Malaysia have the impression that you pay to publish in open-access journals, which is associated with predatory journals. I do not want the quality of my work to be judged like that,” says Sivapragasam, who is now a master’s student in science communication at the University of the West of England in Bristol, UK. Even so, she admits that open science has benefited her work. “When I was doing research, I was always accessing open databases to know the toxicity levels of compounds and to cross-check my experimental data [with those] from other labs.”

Lamis Elkheir shares a similar experience to Sivapragasam. As a pharmaceutical chemistry lecturer at the University of Khartoum, Sudan, and a PhD student in a joint programme between the University of Tours in France and the Mycetoma Research Center in Khartoum, Elkheir says that there is limited awareness of the open-science movement in many African countries. “This leads to a scarcity of opportunities for open-science discussions with my friends and colleagues,” she says. “However, I believe that grassroots initiatives can change this.” Leveraging the training she received from the open-access publisher eLife, Elkheir helped to organize the Global Dynamics in Responsible Research virtual symposium in December 2022, which focused on equity in research, open-science efforts in LMICs and multilingualism in open science.

Sivapragasam suggests that to win over sceptics in LMICs, open-science organizations should interact directly with local researchers. “Agencies can empower researchers in developing nations with training and resources to raise awareness. Open science is a global effort, and no one should be left behind,” says Elkheir.

Is there a good reason not to share?

Although sharing benefits science in general, there might be instances when it is not appropriate to share materials, such as when labs and biotechnology firms want to commercialize their technology and are concerned about proprietary rights over their data and materials.

“Although we increasingly talk about open science, in practice, there is a spectrum of openness that exists,” says Fan. “The terms of sharing can be legally defined to protect commercial interests while advancing open science.”

A great example is the invention of the CRISPR gene-editing tool. As soon as the papers related to the technology were published, the various research groups involved deposited the plasmids on Addgene, which saw a huge spike in demand for them. Around the globe, thousands of researchers tested the plasmids for all sorts of applications. “I would argue that open sharing in this instance produced data that demonstrated to investors that the technology worked,” adds Fan. In November last year, the world’s first CRISPR gene-editing therapy, Casgevy, was approved in the United Kingdom to treat sickle-cell disease and transfusion-dependent β-thalassaemia.

In research, academic reputations are so highly valued that researchers might be overly cautious about sharing data and methods that are not yet fully reproducible. Mellor suggests that more education around the idea that science is a work in progress could help to convince open-science holdouts. “I am optimistic that as we see more researchers engaging in open science, sharing will become a norm,” he says. “We will see the community driving the open-science movement in the future to achieve reproducible and equitable research.” [1]


1. Nature 625, 841-843 (2024)


 

 

 

 

Kaip Einšteinas, remdamasis praeitimi, padarė jo proveržį

„Ikoniško fiziko reliatyvumo ir atominių judesių teorijos nebuvo tokios revoliucinės, teigia skvarbi istorija.

 

     "Einšteino revoliucija: istorinės jo proveržio šaknys", Jürgen Renn ir Hanoch Gutfreund, Princeton Univ. (2023)

 

     Vokiečių fizikas Albertas Einšteinas mirė 1955 m., tačiau vis dėlto yra gyvas – kaip vienas garsiausių visų laikų mokslininkų, genijaus personifikacija ir visos mokslo pramonės subjektas. Knygoje „Einšteino revoliucija“ du žymūs Einšteino gyvenimo ir jo reliatyvumo teorijos ekspertai – Izraelio fizikas Hanochas Gutfreundas ir vokiečių mokslo istorikas Jürgenas Rennas – pateikia originalią ir skvarbią revoliucinio Einšteino indėlio į fiziką ir mūsų požiūrį į fizinį pasaulį analizę.

 

     Biografinių detalių turtinga knyga yra daug daugiau, nei kitas Einšteino pramonės produktas. Nukreipdami jų darbą į ilgą mokslo žinių evoliucijos lanką, Gutfreundas ir Renn išsklaido populiarų mitą apie Einšteiną, kaip netradicinį mokslo genijų, kuris vienas sukūrė šiuolaikinę fiziką nuo nulio – ir vien gryna mintimi.

 

     1905 m. jo annus mirabilis Einšteinas paskelbė keturis revoliucinius straipsnius žurnale Annals of Physics. Pirmasis paaiškino fotoelektrinį efektą, kuris nustatė, kad šviesa patenka į mažus energijos paketus arba fotonus – tai darbas, dėl kurio jis vėliau laimėjo Nobelio fizikos premiją. Antrasis buvo susijęs su Browno judėjimu, atsitiktiniu mažų dalelių judėjimu, kuris palaikė atomų egzistavimo teoriją. Trečiasis pristatė specialiojo reliatyvumo teoriją, taip pat visuotinį šviesos greitį. Ketvirtasis sukūrė masės ir energijos lygiavertiškumo teoriją, išreikštą garsiąja lygtimi E = mc2.

 

     Atrodo, kad šie keturi straipsniai neturi daug bendro, tačiau, kaip įtikinamai teigia autoriai, jie remiasi tomis pačiomis pagrindinėmis idėjomis. Dvidešimtojo amžiaus pradžioje fizikai daugiausia dėmesio skyrė „ribinių problemų“ – mechanikos, termodinamikos ir elektrodinamikos sandūrų, tokių, kaip šilumos spinduliavimas ir mikroskopinių dalelių judėjimas – sprendimui. Einšteinas, labiau nei jo amžininkai, suprato, kad šios trys sritys yra glaudžiai tarpusavyje susijusios. Sprendimams reikėjo holistinio požiūrio.

 

     Einšteinas pritaikė savo statistinės mechanikos meistriškumą, kad peržengtų šių sričių ribas. 

 

Tačiau jo darbas liko fizikoje ir jis nekreipė dėmesio į kitas mokslo sritis, tokias, kaip chemija, astronomija ar geologija, kaip tuo metu darė kai kurie kiti. Pavyzdžiui, vokiečių fiziko Waltherio Nernsto karščio tyrimai apėmė chemiją ir fiziką; jo tautietis, fizikas Emilis Wiechertas sumaišė fiziką ir geologiją, kad išvestų sluoksniuotą Žemės struktūrą.

 

     Einšteinas taip pat taikė dedukcinį metodą. Jis suformulavo pagrindinį principą ir iš to išvedė gamtos dėsnius, naudodamas intuiciją ir matematinę dedukciją. Pavyzdžiui, jo prielaida apie šviesos greičio pastovumą paskatino reliatyvumo teoriją, o jo įsitikinimas atomų egzistavimu paskatino jo darbą apie Brauno judėjimą.

 

     Didelė Einšteino revoliucijos dalis skirta suvokti Einšteino darbą mokslo filosofijoje. Atrodo, kad Einšteino reliatyvumo ir šviesos kvantų (fotonų) teorijos atitinka JAV filosofo Thomaso Kuhno „paradigmos poslinkio“ koncepciją, nes tai buvo radikalus nukrypimas nuo esamų judėjimo ir šviesos idėjų. Tačiau autoriai to nemato taip, kaip to nemato taip ir Einšteinas.

 

     Einšteinas paprastai tvirtino, kad mokslas progresuoja kumuliatyviai, per nuolatinę evoliuciją, o ne per revoliucinius lūžius nuo praeities. Jis matė savo reliatyvumo teoriją, kaip natūralų klasikinės fizikos tęsinį, kurį sukūrė pionieriai, tokie, kaip italų astronomas Galilėjus Galilėjus ir anglų fizikas Isaacas Newtonas, kurie abu padarė išvadą apie gravitacijos elgesį XVI ir XVII amžiuje, taip pat XIX amžiaus fizikai. tokie, kaip Jamesas Clerkas Maxwellas iš Škotijos ir Hendrikas Lorentzas iš Nyderlandų, kurie taip pat išaiškino elektromagnetizmo, šviesos ir judesio prigimtį.

 

     Autoriai pabrėžia, kaip klasikinė fizika negali būti aiškiai atskirta nuo šiuolaikinės Einšteino fizikos. Knygoje taip pat yra daug skyrių apie lenkų astronomą Nikolajų Koperniką ir Galilėjų, kurie XVI–XVII amžiuje išstūmė Žemę iš Visatos modelių centro ir kurių metodai įkvėpė Einšteiną. Kai Einšteinas laikė save stovinčiu ant jų pečių, jis turėjo omenyje, kad be jų indėlio jis nebūtų suformulavęs reliatyvumo teorijos. Gutfreundas ir Renas taip pat daug dėmesio skiria austrų fizikui-filosofui Ernstui Machui, kurio mintys apie materiją, erdvę ir judėjimą buvo svarbios ankstyvajame Einšteino revoliucijos etape. Tačiau, nors Machas neigė atomų egzistavimą, Einšteinas juos laikė savaime suprantamais dalykais.

 

     Nors ir palikdami vietos mokslo revoliucijoms kitur, Gutfreundas ir Renn apsisprendžia apibūdinti žinių transformaciją apie Einšteino kūrybą kaip „Koperniko procesą“, kai informacija ir idėjos ne atmetamos, o pertvarkomos ir interpretuojamos. „Žinių, perduotų iš kultūros aušros, išsaugojimas yra toks pat svarbus kaip ir jų metamorfozė per mokslo revoliucijų transformacijos procesus“, – rašo jie. Koperniko atveju jis išlaikė tą patį dangaus kūnų skaičių, bet pakeitė dangaus architektūrą, pakeisdamas Saulės ir Žemės padėtis.

 

     Netgi garsus Einšteino šedevras, jo bendroji reliatyvumo teorija 1915 m., yra pateikiamas, kaip laipsniško ir sudėtingo Koperniko proceso, kurio metu klasikinės fizikos rezultatai buvo iš naujo interpretuojami, keičiant akcentus, rezultatas. Esamos žinios apie gravitaciją buvo sujungtos su specialia reliatyvumo teorija ir susistemintos taip, kad išnyktų sena gravitacinės „jėgos“ sąvoka.

 

     Autoriai baigia, nagrinėdami Einšteino mokslinį ir socialinį palikimą. Einšteinas laikėsi įprastos doktrinos, kad mokslas yra susijęs tik su faktais apie gamtą ir todėl nesvarbus, kai kalbama apie moralines vertybes. Kaip jis pasakė 1939 m. kreipimesi, „mokslas gali tik išsiaiškinti, kas yra, bet ne tai, kas turėtų būti, o už mokslo srities ribų tebėra būtini visų rūšių vertybiniai sprendimai“.

 

     Nors Einšteinas pabrėžė, kad mokslininkai turi veikti kaip socialiai ir moraliai atsakingi piliečiai, jis taip pat tvirtino, kad normatyviniai teiginiai negali būti pateisinami mokslu. Nors tuo metu tai buvo plačiai priimta, šiandien tai yra prieštaringa. Iš tiesų, kalbėdami apie „žmonijos išlikimą antropocene“, Gutfreundas ir Renn meta iššūkį doktrinai. Atsižvelgiant į visuotinį atšilimą ir kitas galimas žmogaus sukeltas katastrofas, jie teigia, kad „mokslinių ir moralinių sprendimų tarpusavio priklausomybė ir neatskiriamumas“ tapo pernelyg akivaizdus. Mano nuomone, jų bandymas iškelti Einšteiną kaip sektiną pavyzdį šiuolaikiniame mokslo ir socialinės atsakomybės kontekste neįtikina.

 

     "Einšteino revoliucija" yra svarbus ir verčiantis susimąstyti indėlis į mokslinę literatūrą apie Einšteiną ir jo stulbinamą mokslinę kūrybingumą 1905–1925 m. Gutfreundas ir Renas, galbūt, nepateikė galutinio atsakymo, kodėl Einšteinas iš visų žmonių padarė revoliuciją fizikoje taip, kaip jis padarė. Tačiau jie įspūdingai įrodinėja, kad norint suprasti jo genialumą, reikia atsižvelgti ne tik į ankstesnę fizikos istoriją, bet ir į žinių istoriją plačiau. Nors ir ne visada lengva skaityti, knyga sudomins ir fizikus, ir istorikus." [1]


1. Nature 625, 655-656 (2024), By Helge Kragh

How Einstein built on the past to make his breakthroughs


"The iconic physicist’s theories of relativity and atomic motions were not so revolutionary, a penetrating history argues.

The Einsteinian Revolution: The Historical Roots of His Breakthroughs Jürgen Renn and Hanoch Gutfreund Princeton Univ. Press (2023)

German physicist Albert Einstein died in 1955, and yet he is much alive — as one of the most-famous scientists of all time, the personification of genius and the subject of a whole industry of scholarship. In The Einsteinian Revolution, two eminent experts on Einstein’s life and his theory of relativity — Israeli physicist Hanoch Gutfreund and German historian of science Jürgen Renn — offer an original and penetrating analysis of Einstein’s revolutionary contributions to physics and our view of the physical world.

Rich in biographical detail, the book is much more than another product of the Einstein industry. By setting his work in the long arc of the evolution of scientific knowledge, Gutfreund and Renn dispel the popular myth of Einstein as an unconventional scientific genius who single-handedly created modern physics from scratch — and by pure thought alone.

In 1905, his annus mirabilis, Einstein published four revolutionary papers in the journal Annals of Physics. The first explained the photoelectric effect, which established that light comes in tiny packets of energy, or photons — a work that later won him a Nobel Prize in Physics. The second concerned Brownian motion, the random movement of tiny particles, which supported the existence of atoms. The third introduced the theory of special relativity, as well as the universal speed of light. And the fourth developed the theory of the equivalence of mass and energy, expressed in the famous equation E = mc2.

These four papers don’t appear to have much in common, but, as the authors convincingly argue, they are built on the same set of underlying ideas. At the start of the twentieth century, physicists were focused on solving ‘borderline problems’, those at the junctures of mechanics, thermodynamics and electrodynamics, such as the radiation of heat and motions of microscopic particles. Einstein, more than his contemporaries did, realized that the three areas were deeply interconnected. Solutions required a holistic approach.

Einstein applied his mastery of statistical mechanics to cross boundaries between these fields. His work remained in physics, however, and he paid no attention to other areas of science, such as chemistry, astronomy or geology, as some others were doing at the time. For instance, German physicist Walther Nernst’s studies of heat straddled chemistry and physics; his compatriot, physicist Emil Wiechert blended physics and geology to deduce the layered structure of Earth.

Einstein also deployed a deductive approach. He formulated a fundamental principle and derived laws of nature from this using intuition and mathematical deduction. For example, his assumption of the constancy of the velocity of light led to relativity theory, and his conviction in the existence of atoms informed his paper on Brownian motion.

A large part of The Einsteinian Revolution is devoted to comprehending Einstein’s work in the philosophy of science. Einstein’s theories of relativity and light quanta (photons) seem to fit US philosopher Thomas Kuhn’s concept of a ‘paradigm shift’, in that these were a radical departure from existing ideas of motion and light. Yet, the authors don’t see it that way, and nor did Einstein.

Einstein typically argued that science progresses cumulatively, through steady evolution, not through revolutionary breaks with the past. He saw his theory of relativity as a natural extension of the classical physics developed by pioneers such as Italian astronomer Galileo Galilei and English physicist Isaac Newton, who both deduced the behaviour of gravity in the sixteenth and seventeenth centuries, as well as nineteenth-century physicists such as James Clerk Maxwell from Scotland and Hendrik Lorentz from the Netherlands, who also elucidated the nature of electromagnetism, light and motion.

The authors highlight how classical physics cannot be separated cleanly from modern Einsteinian physics. The book also includes substantial sections on Polish astronomer Nicolaus Copernicus and Galileo, who, in the sixteenth and seventeenth centuries, displaced Earth from the centre of models of the Universe, and whose methods inspired Einstein. When Einstein considered himself as standing on their shoulders, he meant that, without their contributions, he would not have formulated the theory of relativity. Gutfreund and Renn also pay much attention to the Austrian physicist–philosopher Ernst Mach, whose thoughts about matter, space and motion were important in the early phase of the Einsteinian revolution. However, whereas Mach denied the existence of atoms, Einstein took them for granted.

Although leaving room for scientific revolutions elsewhere, Gutfreund and Renn settle on describing the transformation of knowledge around Einstein’s work as a ‘Copernican process’, in which information and ideas are not rejected but reordered and reinterpreted. “The preservation of knowledge passed down from the dawn of culture is just as important as its metamorphosis through the transformation processes of scientific revolutions,” they write. In the case of Copernicus, he kept the number of celestial bodies the same but changed the architecture of the heavens by switching the positions of the Sun and Earth.

Even Einstein’s celebrated masterpiece, his general theory of relativity in 1915, is presented as the outcome of an incremental and complex Copernican process in which the results of classical physics were reinterpreted by a shift of emphasis. Existing knowledge about gravitation was brought together with special relativity and structured in a way that made the time-honoured notion of a gravitational ‘force’ disappear.

The authors end by examining Einstein’s scientific and social legacy. Einstein adhered to the conventional doctrine that science is exclusively concerned with facts about nature and therefore irrelevant when it comes to moral values. As he put it in an address in 1939, “science can only ascertain what is, but not what should be, and outside its domain value judgments of all kinds remain necessary”.

Although Einstein emphasized that scientists must act as socially and morally responsible citizens, he also maintained that normative statements cannot be justified by science. Although this was broadly accepted at the time, it is controversial today. Indeed, referring to nothing less than “humanity’s survival within the Anthropocene”, Gutfreund and Renn challenge the doctrine. In light of global warming and other potential man-made catastrophes, they claim that “the interdependence and inseparability of scientific and moral judgments” has become all too evident. In my view, their attempt to elevate Einstein as a role model in the modern context of science and social responsibility is unconvincing.

The Einsteinian Revolution is an important and thought-provoking contribution to the scholarly literature on Einstein and his astounding scientific creativity between 1905 and 1925. Gutfreund and Renn might not have given the final answer as to why Einstein, of all people, revolutionized physics in the way that he did. But they argue in fascinating detail that, to understand his genius, one must take into account not just the earlier history of physics but also the history of knowledge more broadly. Although not always an easy read, the book will interest physicists and historians alike." [1]


1. Nature 625, 655-656 (2024), By Helge Kragh