Sekėjai

Ieškoti šiame dienoraštyje

2023 m. rugsėjo 23 d., šeštadienis

What should Lithuanian teachers imitate: chaos has come to Detroit. That's why it works for labor unions.


"When the United Auto Workers walked out on Detroit's car companies earlier this month, the union called its unconventional plan of attack the Stand Up Strike, an homage to the Sit-Down Strike that transformed American labor nearly a century ago. But the tactics also echoed another innovative campaign with its own catchy name.

Chaos.

Create Havoc Around Our System was the strategy the Association of Flight Attendants unleashed in 1993, when two dozen employees suddenly walked off a total of seven Alaska Airlines flights, showing how a limited number of unpredictable strikes could be more powerful than a mass work stoppage. The strategy was built around the element of surprise, and it was as creative as it was counterintuitive.

Now the UAW is shredding its historical playbook and taking a page from the AFA's.

Instead of the traditional method of striking, a full walkout at one of the Big Three automakers, the UAW is selectively targeting plants operated by Ford Motor, General Motors and Stellantis without much warning. It started with three facilities. It widened the strikes at GM and Stellantis on Friday to 38 parts-distribution centers, sparing Ford from this round because of recent progress in contract talks. The UAW is not saying when or where it might strike next.

But its leaders have explained why less than 15% of the unionized workers are walking out right now. UAW President Shawn Fain told the rank-and-file that this strategy will give negotiators leverage and flexibility at the bargaining table with the Big Three.

"The goal here is to maximize the hurt on the companies while minimizing the risk for the workers," said Barry Eidlin, a McGill University sociologist who studies the labor movement.

That was also the theory behind Chaos, and it was not just effective but highly efficient: The strikes resulted in a better deal with higher pay even though 99% of the unit's flight attendants kept reporting to work.

The UAW's Stand Up Strike strategy was not directly inspired by any one event, but you don't have to squint to see the influence of the AFA's Chaos.

Both are meant to sow confusion, keep companies guessing and paralyze interconnected systems. Both amplify uncertainty and create opportunities for mistakes that the union can exploit. Both stoke members' desire to join the fight and give management an incentive to settle before the strikes expand.

And both actually require more trust, organization and discipline than a typical work stoppage because they depend on secrecy and clear lines of communication. When members of a union are gearing up for a strike, the leaders must have credibility to persuade them that going to work is the savvier move. It takes order to manage chaos.

But here's the most valuable thing about the strategy: It saves money. The slow rollout of the Stand Up Strike means that most workers are still on the job, and the UAW can ratchet up the pressure while preserving its $825 million fund to compensate striking employees. The drawback of an immediate, outright strike is that starting with an extreme action drains resources and leaves the union with little room to escalate based on a company's response.

"You can't turn it up to 11," Eidlin said. "This isn't Spinal Tap."

The strategic philosophies have enough in common that when I called Jerry Glass, a longtime consultant to airlines on labor issues, he told me that he was having Chaos flashbacks.

"It was the first thing I thought of," he said.

Sara Nelson, international president of the AFA-CWA, told me that Chaos strikes increase a union's chances of success because they flip the balance of power and put executives in an unfamiliar position: They have no clue what's coming next.

"And they lose their minds," Nelson told me. "It's very interesting running a Chaos campaign and knowing exactly what's happening. It's sort of like standing in the middle of a tornado and watching everything around you swirling out of control. Except you're not getting caught up in it."

Every useful business strategy is born from someone's imagination. This one was also born from someone's desperation.

David Borer began work as the AFA's director of collective bargaining in 1987, when TWA had just replaced thousands of striking flight attendants from another union. "It was devastating," he said. It was also disorienting. If airlines were going to hire permanent replacements during strikes, Borer feared that his union would never be able to strike.

He wasn't sure how to handle such a tricky situation. Then he opened his copy of "The Art of War."

"Strikes are remarkably analogous to warfare," Borer told me. "One of the things I got from Sun Tzu was that you don't just attack your opponent. You attack your opponent's strategy. The strategy of the airlines was that they would just replace the flight attendants. So our strategy had to go right at that."

The union's top priority was reducing the possibility of permanent replacements taking their jobs, he said, and temporarily striking a limited number of seemingly random flights would achieve that goal. Alaska had prepared for a potential strike by training hundreds of accountants, secretaries and office workers to be replacement flight attendants and putting them on planes just in case. After the contract talks stalled in May 1993, the AFA tortured the airline with two months of threats to create havoc -- and then, right before a crowded plane from Seattle to San Diego was scheduled to board, the flight attendants struck.

Chaos ensued.

"They had no idea what to do," Borer said, "because nobody had done this before."

The airline suspended some flight attendants, replaced others and pledged to fire anyone else who participated in the strikes. But most of the union members picketing with "Pay us, or Chaos" signs kept working their assigned shifts. The entire campaign involved 24 of 1,500 flight attendants and seven flights over several months. The AFA hoped it would spook passengers and dent the airline's business, and Alaska's traffic fell as soon as the flight attendants promised chaos -- and before Chaos delayed a single flight.

The key moment in this labor dispute was a federal court ruling in December 1993 that upheld the legality of the intermittent strikes and validated the AFA's strategy. That decision prohibited Alaska from disciplining flight attendants who walked off the planes and forced the airline to reinstate the ones who had been replaced.

Alaska and the AFA had been at war for three years by then. They had peace within two weeks of the court ruling.

The flight attendants have only used Chaos once. But once was enough.

The mere possibility that it might torment the airlines with more Chaos provides the union with ammunition in labor disputes to this day. When the flight attendants are bargaining, they're also picketing in loud, purposefully ugly green Chaos shirts, reminding management that their airline could be the next Alaska. This strategy doesn't even have to be executed to be successful.

Chaos isn't a strategy that applies to every strike because not every company is as vulnerable to disruption as airlines. While striking a few movie sets won't shut down Hollywood, targeting a few factories can slow down Detroit's production line. And that can manufacture a negotiating advantage for the side at a financial disadvantage.

Just ask David Borer. He's now the general counsel for the American Federation of Government Employees. On his office wall is a poster celebrating the AFA's declaration of victory. On the shelves are two dozen editions of the book responsible for that victory.

"I actually collect Sun Tzu," he said. "I had one at the time. I've been collecting ever since."" [1]

 

I'm not a lawyer, I don't know what the law allows striking teachers in Lithuania. And if allowed, striking teachers could unexpectedly disrupt showing up to the work of some parents of young children by suddenly announcing a day of strike in strategically chosen classrooms. These disturbances would ripple through the entire Lithuanian economy and change the government's position in the negotiations quite quickly.

 

1. EXCHANGE --- Science of Success: Chaos Has Come to Detroit. This Is Why It Works. --- The UAW's strategy relies on surprise, but it's not unprecedented. Cohen, Ben.  Wall Street Journal, Eastern edition; New York, N.Y.. 23 Sep 2023: B.5.

 

Tobulų kristalinių grotelių gamyba, kad jūsų telefonas būtų greitesnis --- Dėl lustų gamybos technologinės pažangos dabar reikia rūšiuoti ir sudėti medžiagas nanoskopiniu mastu

    „Tai, kaip technologijų įmonės ir toliau tiekia vis greitesnius ir galingesnius kompiuterius, išgyvena esminius pokyčius – atominiu lygmeniu.

 

     Našumo padidėjimas, kuris dešimtmečius buvo pasiektas, daugiausia mažinant atskirus mikroschemų komponentus (dažnai vadinamas Moore'o įstatymu), dabar vis dažniau yra medžiagų mokslo, kuris vystosi greičiau, nei per dešimtmečius, rezultatas. Santa Klaroje įsikūrusi „Applied Materials“, įkurta 1967 m., likus metams iki „Intel“, yra didžiausia iš pirmaujančių įmonių.

 

     Tai pokytis, gimęs iš būtinybės. Lustų gamintojai susiduria su griežta riba, kiek mažais, lustuose esantys, elementai gali tapti, nes kai kurias jų savybes dabar galima išmatuoti vos kelių atomų skalėje.

 

     Dėl to manipuliavimas, kokios medžiagos yra šiose mažytėse mašinose ir kaip jos sujungtos viena su kita, tapo pagrindiniu būdu, kuriuo inžinieriai gali toliau jas gaminti greičiau ir efektyviau.

 

     „Applied Materials“ ir jos konkurentai „Lam Research“, „Tokyo Electron“ ir „KLA“ tam tikru ar kitokiu mastu yra medžiagų mokslo įmonės. Medžiagų mokslas yra tarpdisciplininė sritis, tiek konstrukcijų inžinerija, tiek chemijos inžinerija, tai yra naujų junginių kūrimas ir nauji jų panaudojimo būdai.

 

     Kad būtų aišku, inžinieriai vis dar mažina lustų funkcijas, nors ir daug lėčiau nei istoriškai buvo įprasta. Tai, kad bet koks Moore'o dėsnio panašumas ir toliau išlieka – visgi liko keli atomai, kad būtų galima nuskusti lustų viduje esančių savybių dydį – daugiausia dėl olandų bendrovės ASML. Bendrovė gamina autobuso dydžio, 180 tonų sveriančius itin sudėtingus įrenginius, kurie manipuliuoja ekstremalia ultravioletine šviesa egzotiškais, niekad nebandytais būdais.

 

     Kitas žingsnis yra Applied Materials ir jos konkurentai: šios įmonės dirba kartu su lustų gamintojais ir kitais tiekėjais, tokiais, kaip ASML, kad būtų galima atlikti daugumą kitų veiksmų, susijusių su lustų gamyba.

 

     Tai skulptūros procesas atominiu lygmeniu. Sluoksnis po sluoksnio, pažangiausi pasaulyje lustai sukuriami, sudėjus sluoksnių, kurių storis gali būti tik vieno atomo  storio, ir atimant junginius toje pačioje nanoskopinėje skalėje, sako Scottenas Jonesas, TechInsights vyresnysis bendradarbis.

 

     Tačiau trimačių lustų gamyba reiškia didesnį jų gamybos sudėtingumą, sako Subramanianas Iyeris, kuris daugiau, nei 30 metų, IBM dirbo mikroschemų gamyboje, o dabar yra Kalifornijos universiteto Los Andžele profesorius.

 

     Vienas iš būdų apibūdinti šį sudėtingumą yra kalbėti apie tai, kiek laidų sluoksnių yra luste. Kiekvienas laidų sluoksnis yra skirtas kanalams, kurie nukreipia elektronus tarp kitų lusto dalių, todėl jie yra tarpinis serveris, nurodantis, kiek sluoksnių iš viso turi lustas.

 

     „90-ųjų pabaigoje lustas su 6 laidų sluoksniais buvo moderniausias“, – sako dr. „Dabar kai kurie iš šių lustų yra 19–20 laidų sluoksnių."

 

     Jei mikroschemos būtų pastatai, tai tarsi kuklūs praėjusių metų vasarnamiai tapo daugiaaukščiais.

 

     Paprastai tariant, kuo daugiau trimačių mikroschemų tampa, tuo daugiau ant jų nusėda medžiagų ir pašalinamos nepageidaujamos dalelės, sako Jonesas. Ir tai yra lustų gamybos dalis, kurią atlieka Applied Materials ir jos konkurentai.

 

     Norint suprasti, kodėl tai tiesa, naudinga žinoti, kad litografija – šviesos panaudojimo, šviečiančios per kaukes, elementų modelio ant lusto išdėstymo procesas, iš esmės yra dvimatis procesas. Įmonės, kurios specializuojasi litografijoje, pvz., ASML, gali naudoti įvairius protą lenkiančius triukus, kad gautų šviesą, kurią naudoja silicio lusto modeliams, kurių detalės vis labiau priartėja prie vieno atomo dydžio.

 

     Bet pridėti dar vieną sluoksnį į lustą ir dar vieną ir dar vieną ant jo? Tokią patirtį teikia „Applied Materials“. Ir protinga chemija, kurios reikia norint pašalinti tas silicio plokštelės dalis, kurių nenorite – po šviesos poveikio litografijos procese – taip pat.

 

     Paimkime, pavyzdžiui, pažangiausius pasaulyje loginius lustus. Tai yra pažangiausio kompiuterio centriniai procesoriai, nesvarbu, ar jis yra jūsų telefone, duomenų centre ar transporto priemonėje, ir funkciškai skiriasi nuo lustų, atsakingų už atmintį, arba mažyčių radijo imtuvų, įgalinančių belaidį ryšį.

 

     Tokiam loginiam lustui gali prireikti daugiau, nei 1500 atskirų gamybos etapų, sako Tristanas Holtamas, Applied Materials įmonės strategijos ir plėtros vadovas.

 

     Visi šie veiksmai būtini dėl to, kaip toli šie lustai tęsiasi trečioje dimensijoje, sako Jonesas iš TechInsights. Kiekvienam sluoksniui gali prireikti kelių gamybos etapų – naudojant šviesą raštui įdeginti ant lusto, nusodinti medžiagas atomų storio sluoksniais arba pasirinktinai ėsdinti,  pašalinti medžiagas, kurių nenorite.

 

     Pavyzdžiui, viename iš naujausių procesų lustų gamintojai kloja papildomus gryno silicio ir silicio, kuriame yra kitų elementų, pavyzdžiui, germanio, sluoksnius. Visi susidarę atomai, pridedami prie lusto šio proceso metu, turi būti išdėstyti tobuloje kristalinėje gardelėje, kad susidarantys „horizontalūs nanosluoksniai“, kurie sudaro atskirų tranzistorių dalis, veiktų, sako Jonesas. Silicio-germanio dalys turi būti išgraviruotos, nepaliečiant gryno silicio, nepaisant to, kad šios dvi medžiagos yra gana panašios – tai sudėtinga užduotis, kuriai reikia dar daugiau medžiagų mokslo.

 

     Visi šie veiksmai turi būti atliekami visiškai beorėje kameroje. Net ir menkiausi defektai gali reikšti, kad gaminama mikroschema neveiks.

 

     Tuo tarpu visos kitos lustų įmonės – ir visi pavadinimai, kuriuos nuolat girdite, įskaitant „Intel“, „TSMC“ ir „Samsung“ – negali gaminti savo lustų be taikomųjų medžiagų techninės įrangos ir patirties bei kelių kitų įmonių, kurios daugiausia dėmesio skiria medžiagoms.

 

     Lustų gamintojams reikalaujant dar daugiau naujovių, „Applied Materials“ greta esamos Silicio slėnyje stato naują, 4 mlrd. dolerių vertės tyrimų ir plėtros objektą. Viduje jos klientai galės išbandyti naujus lustų gamybos būdus, o toje pačioje vietoje Applied Materials kuria naujausius pažangiausius metodus.

 

     Toks įrenginys yra būtinas, sako Holtam iš Applied Materials, nes ir toliau plėsti ribas to, ką galima padaryti, naudojant silicio pagrindu pagamintas mikroschemas, reiškia naršyti tai, kas mikroschemų gamyboje tapo „protui sunkiai suvokiamo sudėtingumo“ pasauliu.” [1]

 

1. EXCHANGE --- Keywords: Manipulating Atoms to Make Your Phone Faster --- Technological progress in chip making now requires sorting and stacking materials at a nanoscopic scale. Mims, Christopher.  Wall Street Journal, Eastern edition; New York, N.Y.. 23 Sep 2023: B.2.  

Producing Perfect Crystalline Lattices to Make Your Phone Faster --- Technological progress in chip making now requires sorting and stacking materials at a nanoscopic scale.


"The way tech companies continue to deliver ever-faster and more capable computers is undergoing a profound change -- at the atomic level.

Performance gains that were for decades accomplished mostly by shrinking the individual components on microchips -- often described as Moore's Law -- are now increasingly the result of materials science, which is evolving faster than it has in decades. Santa Clara-based Applied Materials, founded in 1967, a year before Intel, is the biggest of the companies that are leading the way.

It's a change born of necessity. Chip makers are bumping up against a hard limit on how tiny the elements on chips can become, as some of their features can now be measured at the scale of just a few atoms.

As a result, manipulating what materials are in these tiny machines, and how they're connected to one another, has become a primary way that engineers can continue to make them faster and more capable.

Applied Materials and its rivals Lam Research, Tokyo Electron and KLA, are, to one degree or another, materials science firms. Materials science is an interdisciplinary field, as much structural engineering as chemical engineering, that's all about coming up with new compounds, and new ways to use them.

To be clear, engineers are still shrinking the features on chips -- albeit at a much slower pace than has historically been the norm. That any semblance of Moore's Law continues -- there are still a few atoms left to shave off the size of features inside chips, after all -- is due largely to the Dutch company ASML. The company makes the bus-size, 180-ton, ultra-complicated devices that manipulate extreme ultraviolet light in exotic, never-before-attempted ways.

The next step is where Applied Materials and its competitors come in: These companies work hand in glove with chip makers, and other providers like ASML, to make possible most of the other steps involved in making chips.

It's a process of sculpting at the atomic level. Layer by layer, the world's most advanced chips are built up through processes of addition -- of layers that can be mere atoms thick -- and also subtraction of compounds on the same nanoscopic scale, says Scotten Jones, a senior fellow at TechInsights, a semiconductor manufacturing consultancy.

But making chips three-dimensional means more complexity in manufacturing them, says Subramanian Iyer, who spent more than 30 years at IBM working on the manufacturing of microchips, and is now a professor at the University of California, Los Angeles.

One way to describe that complexity is to talk about how many wiring layers there are in a chip. Each wiring layer is devoted to channels that funnel electrons between other parts of the chip, so they're a proxy for how many layers a chip has overall.

"In the late 90s, a chip with 6 wiring layers was state-of-the-art," says Dr. Iyer. "Now some of these chips are at 19 to 20 wiring layers."

If microchips were buildings, it's as if the modest bungalows of years past have become towering high-rises.

Generally speaking, the more three-dimensional microchips become, the more depositing materials onto them and etching away the bits you don't want matters, says Jones. And that's the part of chip manufacturing done by Applied Materials and its competitors.

To understand why this is true, it helps to know that lithography -- the process of using light, shone through masks, to lay down the pattern of elements on a chip -- is fundamentally a two-dimensional process. Companies that specialize in lithography, like ASML, can use all kinds of mind-bending tricks to get the light they use to make patterns on a silicon chip with details ever-closer to the size of a single atom.

But adding another layer to a chip, and another and another on top of that? That's the expertise supplied by the likes Applied Materials. And the clever chemistry required to etch away the parts of a silicon wafer you don't want -- after exposure to light in the lithography process -- is too.

Take, for example, the world's most advanced logic chips. These are the central processing units in a cutting-edge computer, whether it's in your phone, a data center, or vehicle, and are functionally distinct from the chips responsible for memory or the tiny radios that enable wireless communications.

Such a logic chip can require in excess of 1,500 individual manufacturing steps, says Tristan Holtam, head of corporate strategy and development at Applied Materials.

All those steps are required because of how far these chips stretch into the third dimension, says Jones of TechInsights. Each layer can require multiple manufacturing steps -- using light to burn a pattern onto a chip, depositing materials in atoms-thick layers, or selectively etching away materials that you don't want.

For example, in one of the newest processes, chip makers are laying down additional layers of pure silicon, and silicon that includes other elements, such as germanium. All of the resulting atoms added atop a chip in this process must be arranged in a perfect crystalline lattice in order for the resulting "horizontal nanosheets," which form parts of individual transistors, to work, says Jones. The parts that are silicon-germanium must be etched away without touching the pure silicon, despite the fact that the two substances are quite similar -- a challenging task that requires yet more materials science.

All of these steps must be carried out inside a completely airless chamber. Even the tiniest defects can mean the microchip that's being manufactured won't work.

Meanwhile, every other chip company of consequence -- and all the names you regularly hear, including Intel, TSMC and Samsung -- can't make their chips without the hardware and expertise of Applied Materials and a handful of other companies that focus on materials science.

With chip makers clamoring for even more innovations, Applied Materials is building a new, $4 billion R&D facility next door to its existing one in Silicon Valley. Inside, its customers will be able to try out new ways to make chips, in the same place Applied Materials is developing its latest cutting-edge methods.

Such a facility is necessary, says Holtam of Applied Materials, because continuing to push the boundaries of what can be done with silicon-based microchips means navigating what has become, in microchip manufacturing, a world of "mind-boggling complexity."" [1]

1. EXCHANGE --- Keywords: Manipulating Atoms to Make Your Phone Faster --- Technological progress in chip making now requires sorting and stacking materials at a nanoscopic scale. Mims, Christopher.  Wall Street Journal, Eastern edition; New York, N.Y.. 23 Sep 2023: B.2.